CHAPTER 10 CREATING AN ARCHITECTURAL DESIGN

Ficure 10.7

UML relation-
ships for
SafeHome
security
function

archetypes
(adapted from

[BOS00D)

CovaB

Components of the
software architecture
are derived from three
sources—the applice-
tion domain, the infra-
shucture domain, and
the inferface domain.
Becavse analysis
modeling does not
address infrastructure,
allocate sufficient
design time to consider
it carefully.

Communicates with

Recall that the archetypes form the basis for the architecture but are abstractions
that must be further refined as architectural design proceeds. For example, Detec-
tor might be refined into a class hierarchy of sensors.

10.4.3 Refining the Architecture into Components

As the software architecture is refined into components, the structure of the system
begins to emerge. But how are these components chosen? In order to answer this
question, the architectural designer begins with the classes that were described as
part of the analysis model.® These analysis classes represent entities within the ap-
plication (business) domain that must be addressed within the software architec-
ture. Hence, the application domain is one source for the derivation and refinement
of components. Another source is the infrastructure domain. The architecture must
accommodate many infrastructure components that enable application compo-
nents but have no business connection to the application domain. For example,
memory management components, communication components, database com-
ponents, and task management components are often integrated into the software
architecture.

The interfaces depicted in the architecture context diagram (Section 10.4.1) imply
one or more specialized components that process the data that flow across the in-
terface. In some cases (e.g. a graphical user interface), a complete subsystem archi-
tecture with many components must be designed.

6 1f a conventional (non-object-oriented) approach is chosen, components can be derived from the
data flow model. We discuss this approach in Section 10.6.

302 PART TWO SOFTWARE ENGINEERING PRACTICE

e system provides the ecology in which code is born, motures, and dies. A
30 of all the components needed in a software system.”

Continuing the SafeHome home security function example, we might define the
set of top-level components that address the following functionality:

e External communication management—coordinates communication of the
security function with external entities, for example, Internet-based systems,
external alarm notification.

e Control panel processing—manages all control panel functionality.

e Detector management—coordinates access to all detectors attached to the
system.

e Alarm processing—verifies and acts on all alarm conditions.

Each of these top-level components would have to be elaborated iteratively and then
positioned within the overall SafeHome architecture. Design classes (with appropri-
ate attributes and operations) would be defined for each. It is important to note, how-
ever, that the design details of all attributes and operations would not be specified
until component-level design (Chapter 11).

The overall architectural structure (represented as a UML component diagram) is
illustrated in Figure 10.8. Transactions are acquired by External communication man-
agement as they move in from components that process the SafeHome GUI and the In-
ternet interface. This information is managed by a SafeHome executive component that

HIAIMER: N Overall architectural structure for SafeHome with top-level components

1 SafeHome
1 executive

Function
N ~ ~« selection

Home

Security Surveillance || soe
management

Gul Internet
interface

CHAPTER 10 CREATING AN ARCHITECTURAL DESIGN 303

selects the appropriate product function (in this case, security). The control panel pro-
cessing component interacts with the homeowner to arm/disarm the security func-
tion. The detector management component polls sensors to detect an alarm condition,
and the alarm processing component produces output when an alarm is detected.

10.4.4 Describing Instantiations of the System

The architectural design that has been modeled to this point is still relatively high level.
The context of the system has been represented; archetypes that indicate the impor-
tant abstractions within the problem domain have been defined; the overall structure
of the system is apparent; and the major software components have been identified.
However, further refinement (recall that all design is iterative) is still necessary.

To accomplish this, an actual instantiation of the architecture is developed. By this
we mean that the architecture is applied to a specific problem with the intent of
demonstrating that the structure and components are appropriate.

Figure 10.9 illustrates an instantiation of the SafeHome architecture for the secu-
rity system. Components shown in Figure 10.8 are refined further to show additional
detail. For example, the detector management component interacts with a scheduler

W instantiation of the security function with component elaboration

SafeHome
executive

Internet
interface

304 PART TWO SOFTWARE ENGINEERING PRACTICE
infrastructure component that implements “concurrent” polling of each sensor object

used by the security system. Similar elaboration is performed for each of the com-
ponents represented in Figure 10.8.

Architectural Design

2
Q Objective: Architectural design tools model construction of specific Web-based component
the overall software structure by representing architectures.
component inferfaces, dependencies and relationships, Objectif, developed by microTOOL GmbH
and inferactions. {www.microtool.com), is a UML-based design tool that

leads to architectures (e.g., Coldfusion, J2EE, Fusebox)

Mechanics: Tool mechanics vary. in most cases
4 : amenable to component-based software engineering

architectural design capability is part of the functiondlity

provided by automated tools for analysis and design ‘(Chapter 30). i .
Jeling. Rational Rose, developed by Rational (www.rational.com),
is a UML-based design tool that supports all aspects of
Representative Tools” architectural design.

Adalon, developed by Synthis Corp. {(www.synthis.com), is
a specialized design tool for the design and

o J

At its best, design results in a number of architectural alternatives that are each as-
sessed to determine which is the most appropriate for the problem to be solved. In the
sections that follow, we consider the assessment of alternative architectural designs.

10.5.1 An Architecture Trade-Off Analysis Method

The Software Engineering Institute (SEI) has developed an architecture trade-off analy-
sis method (ATAM) [KAZ98] that establishes an iterative evaluation process for software
architectures. The design analysis activities that follow are performed iteratively:

1. Collect scenarios. A set of use-cases (Chapters 7 and 8) is developed to repre-
sent the system from the user’s point of view.

2. Elicit requirements, constraints, and environment description. This information
is required as part of requirements engineering and is used to be certain that
all stakeholder concerns have been addressed.

7 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.
In most cases, tool names are trademarked by their respective developers.

CHAPTER 10 CREATING AN ARCHITECTURAL DESIGN 305

3. Describe the architectural styles/patterns that have been chosen to address the
scenarios and requirements.

4. Evaluate quality attributes by considering each attribute in isolation. Quality at-
tributes for architectural design assessment include reliability, performance,
security, maintainability, flexibility, testability, portability, reusability, and in-
teroperability.

5. Identify the sensitivity of quality attributes to various architectural atiributes for a
specific architectural style. This can be accomplished by making small changes
in the architecture and determining how sensitive a quality attribute, say per-
formance, is to the change. Any attributes that are significantly affected by
variation in the architecture are termed sensitivity points.

6. Critique candidate architectures (developed in step 3) using the sensitivity analy-
sis conducted in step 5. The SEI describes this approach in the following man-
ner [KAZ98}:

Once the architectural sensitivity points have been determined, finding trade-off
points is simply the identification of architectural elements to which multiple attrib-
utes are sensitive. For example, the performance of a client-server architecture might
be highly sensitive to the number of servers (performance increases, within some
range, by increasing the number of servers). . . . The number of servers, then, is a
trade-off point with respect to this architecture.

These six steps represent the first ATAM iteration. Based on the results of steps 5
and 6, some architecture alternatives may be eliminated, one or more of the
remaining architectures may be modified and represented in more detail, and then
the ATAM steps are reapplied.®

8 The Software Architecture Analysis Method (SAAM) is an alternative to ATAM and is well-worth ex-
amining by those readers interested in architectural analysis. A paper on SAAM can be downloaded
from: http://www.sei.cmu.edu/publications/articles/saam-metho-propert-sas.html.

PART TWO SOFTWARE ENGINEERING PRACTICE

dlfferenl ‘ #anario

Doug: You're 'O“Ung ng

; L Change scenario, ngh!?—
about architectural

) compleb set of use-cases.

v&mherlha architectural Vinod: %
Systom has to twist ifself scenarios best is ﬁ\eonqrwa‘ hox

ancther name for use-cases?

10.5.2 Architectural Complexity

A useful technique for assessing the overall complexity of a proposed architecture is
to consider dependencies between components within the architecture. These de-
pendencies are driven by information/control flow within the system. Zhao [ZHA98]
suggests three types of dependencies:

Sharing dependencies represent dependence relationships among consumers who use the
same resource or producers who produce for the same consumers. For example, for two
components u and v, if u and v refer to the same global data, then there exists a shared
dependence relationship between u and v.

Flow dependencies represent dependence relationships between producers and con-
sumers of resources. For example, for two components u and v, if u must complete be-
fore control flows into v (prerequisite), or if u communicates with v by parameters, then
there exists a flow dependence relationship between u and v.

Constrained dependencies represent constraints on the relative flow of control among
a set of activities. For example, for two components u and v, if u and v cannot execute at
the same time (mutual exclusion), then there exists a constrained dependence relation-
ship between u and v.

The sharing and flow dependencies noted by Zhao are similar to the concept of cou-
pling discussed in Chapter 9. Coupling is an important design concept that is appli-
cable at the architectural level and at the component level. Simple metrics for
evaluating coupling are discussed in Chapter 15.

10.5.3 Architectural Description Languages

The architect of a house has a set of standardized tools and notation that allow the
design to be represented in an unambiguous, understandable fashion. Although the

CHAPTER 10 CREATING AN ARCHITECTURAL DESIGN 307

software architect can draw on UML notation, other diagrammatic forms, and a few
related tools, there is a need for a more formal approach to the specification of an
architectural design.

Architectural description language (ADL) provides a semantics and syntax for de-
scribing a software architecture. Hofmann and his colleagues [HOFO1] suggest that
an ADL should provide the designer with the ability to decompose architectural com-
ponents, compose individual components into larger architectural blocks, and rep-
resent interfaces (connection mechanisms) between components. Once descriptive,
language-based techniques for architectural design have been established, it is more
likely that effective assessment methods for architectures will be established as the

design evolves.
SorTwWARE TooLs

-, Architectural Description Languages
4
Q The following summary of a number of Aesop (www.cs.cmu.edu/~able/aesop/) [GAR94]

important ADLs was prepared by Rickard Land addresses the problem of style reuse.
[LANO2] and is reprinted with the author’s permission. It Wright (www.cs.cmu.edu/~able/wright/) [ALL97]
should be noted that the first five ADLs listed have been formalizes architectural styles using predicates, thus
developed for research purposes and are not commercial allowing for static checks to determine the consistency
products. and complefeness of an architecture.

Acme (www.cs.cmu.edu/~acme/) [GAROQ] is a second-
generation ADL.

) ; . UML (www.uml.org/) includes many of the artifacts
UniCon {www.cs.cmu.edu/~UniCon) [SHA96] defines needed for architectural descriptions, but is not as

software architectures in terms of abstractions that complete as ofher ADLs.

K designers find useful. /

Raopide (poset.stanford.edu/rapide/) [LUC95] builds on
the notion of partial ordered sefs.

The styles discussed in Section 10.3.1 represent radically different architectures, so
it should come as no surprise that a comprehensive mapping that accomplishes the
transition from the analysis model to a variety of architectural styles does not exist.
In fact, there is no practical mapping for some architectural styles. The designer must
approach the translation of requirements to design for these styles by using the tech-
niques discussed in Section 10.4.

To illustrate one approach to architectural mapping, we consider a mapping tech-
nique for the call and return architecture—an extremely common structure for many
types of systems. This mapping technique enables a designer to derive reasonably
complex call and return architectures from data flow diagrams within the analysis
model. The technique, sometimes called structured design, is presented in books by
Myers [MYE78] and Yourdon and Constantine [YOU79].

Structured design is often characterized as a data flow-oriented design method
because it provides a convenient transition from a data flow diagram (Chapter 8)

Transaction
flow

PART TWO SOFTWARE ENGINEERING PRACTICE

to software architecture. The type of information flow is the driver for the map-
ping approach.

10.6.1 Transform Flow

Information must enter and exit software in an “external world” form. For example,
data typed on a keyboard, tones on a telephone line, and video images in a multi-
media application are all forms of external world information. Such externalized
data must be converted into an internal form for processing. Information enters the
system along paths that transform external data into an internal form. These paths
are identified as incoming flow. At the kernel of the software, a transition occurs. In-
coming data are passed through a transform center and begin to move along paths
that now lead “out” of the software. Data moving along these paths are called out-
going flow. The overall flow of data occurs in a sequential manner and follows one,
or only a few, “straight line” paths.® When a segment of a data flow diagram exhibits
these characteristics, transform flow is present.

10.6.2 Transaction Flow

Information flow is often characterized by a single data item, called a transaction,
that triggers other data flow along one of many paths. When a DFD takes the form
shown in Figure 10.10, transaction flow is present.

Transaction flow is characterized by data moving along an incoming path that
converts external world information into a transaction. The transaction is evalu-

Transaction .
Action

paths
Transaction e
center

9 An obvious mapping for this type of information flow is the data flow architecture described in Sec-
tion 10.3.1. There are many cases, however, where the data flow architecture may not be the best
choice for a complex system. Examples include systems that will undergo substantial change over
time or systems in which the processing associated with the data flow is not necessarily sequential.

Gpvms’

If the DFD is refined
further at this time,
strive to derive bubbles
that exhibit high
cohesion.

CHAPTER 10 CREATING AN ARCHITECTURAL DESIGN 309

ated and, based on its value, flow along one of many action paths is initiated. The
hub of information flow from which many action paths emanate is called a trans-
action center.

It should be noted that, within a DFD for a large system, both transform and trans-
action flow may be present. For example, in a transaction-oriented flow, information
flow along an action path may have transform flow characteristics.

10.6.3 Transform Mapping

Transform mapping is a set of design steps that allows a DFD with transform flow
characteristics to be mapped into a specific architectural style. To illustrate this ap-
proach, we again consider the SafeHome security function.'® One element of the
analysis model is a set of data flow diagrams that describe information flow within
the security function. To map these data flow diagrams into an architecture, the fol-
lowing design steps are initiated:

Step 1. Review the fundamental system model. The fundamental system
model or context diagram depicts the security function as a single transformation,
representing the external producers and consumers of data that flow into and out of
the function. Figure 10.11 depicts a level 0 model, and Figure 10.12 depicts refined
data flow for the security function.

Step 2. Review and refine data flow diagrams for the software. Information
obtained from the analysis models is refined to produce greater detail. For example,
the level 2 DFD for monitor sensors (Figure 10.13) is examined, and a level 3 data flow

Context level
DFD for the
SafeHome
security
function

User commands
and data

Display
information

Sensor Telephone
status number tones

10 We consider only the portion of the SafeHome security function that uses the control panel. Other
features, discussed earlier in this book and this chapter, will not be considered here.

310 PART TWO SOFTWARE ENGINEERING PRACTICE

Level 1 DFD for
the SafeHome e ' 4
sercommands =" " T T
secur.ity and data_ -~ T~<
function P ~<
\\\
N
Conf(i?uraﬁon o
] ata N

/ Configuré AN

[request Configuration information \

i 1

1 . Start Configuration !

‘\ Password stop data II

\ /
\ /
/
Valid ID msg. 7 Displa
Confégal#;ahon // in ormah):)n -
R iy S vt g
information
Alarm type
Sensor
status Telephone

number tones

Level 2 DFD Sensor

that refines information

the monitor

sensors larm
transform

Configuration information] Sensor ID
type,

location

Configuration
data

Sensor ID,

fype

Sensor Telephone

status number tones

diagram is derived as shown in Figure 10.14. At level 3, each transform in the data
flow diagram exhibits relatively high cohesion (Chapter 9). That is, the process im-
plied by a transform performs a single, distinct function that can be implemented as
a component in the SafeHome software. Therefore, the DFD in Figure 10.14 contains
sufficient detail for a “first cut” at the design of architecture for the monitor sensors
subsystem, and we proceed without further refinement.

CHAPTER 10 CREATING AN ARCHITECTURAL DESIGN 311

erl 3 DFD for monitor sensors with flow boundaries

Sensor
status

%,
POINTY
You will often
encounter both types
of data flow within the
same flow-oriented
model. The flows are
partitioned and
program structure is
derived using the
appropriate mapping.

eq'pvm‘

Vary the location of
flow boundaries in an
effort to explore alter-
nafive program struc-
tures. This takes very
little fime and provides
important insight.

Sensor

Configuration information] ~ Formated
information

ID, type,

location

Configuration data
9 4

Sensor
ID, setting

et
~*“condition code;
sensor D, timing
information

List of
numbers
Telephone” {
number i

%

\ Tone

o ready
telephone

number Telephone
number tones

Step 3. Determine whether the DFD has transform or transaction flow char-
acteristics. In general, information flow within a system can always be represented
as transform. However, when an obvious transaction characteristic (Figure 10.10) is en-
countered, a different design mapping is recommended. In this step, the designer se-
lects global (software-wide) flow characteristics based on the prevailing nature of the
DFD. In addition, local regions of transform or transaction flow are isolated. These sub-
flows can be used to refine program architecture derived from a global characteristic
described previously. For now, we focus our attention only on the monitor sensors sub-
system data flow depicted in Figure 10.14.

Evaluating the DFD (Figure 10.14), we see data entering the software along one
incoming path and exiting along three outgoing paths. No distinct transaction cen-
ter is implied (although the transform establishes alarm conditions that could be per-
ceived as such). Therefore, an overall transform characteristic will be assumed for
information flow.

Step 4. Isolate the transform center by specifying incoming and outgoing _
flow boundaries. In the preceding section incoming flow was described as a path
that converts information from external to internal form; outgoing flow converts
from internal to external form. Incoming and outgoing flow boundaries are open to
interpretation. That is, different designers may select slightly different points in the

312

CovaB

Don't become
dogmatic ot this stage.
It may be necessary to
establish two or more
controllers for input
processing or computa-
tion, based on the
complexity of the
system to be built. If
common sense dictates
this approach, do it!

PART TWO SOFTWARE ENGINEERING PRACTICE

flow as boundary locations. In fact, alternative design solutions can be derived by
varying the placement of flow boundaries. Although care should be taken when
boundaries are selected, a variance of one bubble along a flow path will generally
have little impact on the final program structure.

Flow boundaries for the example are illustrated as shaded curves running verti-
cally through the flow in Figure 10.14. The transforms (bubbles) that constitute the
transform center lie within the two shaded boundaries that run from top to bottom
in the figure. An argument can be made to readjust a boundary (e.g., an incoming
flow boundary separating read sensors and acquire response info could be proposed).
The emphasis in this design step should be on selecting reasonable boundaries,
rather than lengthy iteration on placement of boundaries.

Step 5. Perform “first-level factoring.” The program architecture derived using
this mapping results in a top-down distribution of control. Factoring results in a pro-
gram structure in which top-level components perform decision-making and low-
level components perform most input, computation, and output work. Middle-level
components perform some control and do moderate amounts of work.

When transform flow is encountered, a DFD is mapped to a specific structure (a
call and return architecture) that provides control for incoming, transform, and out-
going information processing. This first-level factoring for the monitor sensors sub-
system is illustrated in Figure 10.15. A main controller (called monitor sensors

First-level
factoring for
monitor
sensors

ﬁpwc:‘

Keep “worker”
modules fow in the
program structure. This
will lead to an architec-
ture that is easier to
mainfain.

€

Fliminate redundant
control modules. That
is, if a control module
does nothing except
control one other
module, its control
function should be
imploded fo a higher
leve! module.

Cova

Focus on the functional
independence of the
modules you've
derived. High cohesion
and low coupling
should be your goal.

CHAPTER 10 CREATING AN ARCHITECTURAL DESIGN 313

executive) resides at the top of the program structure and coordinates the following
subordinate control functions:

e An incoming information processing controller, called sensor input controller,
coordinates receipt of all incoming data.

¢ A transform flow controller, called alarm conditions controller, supervises all
operations on data in internalized form (e.g., a module that invokes various
data transformation procedures).

¢ An outgoing information processing controller, called alarm output controller,
coordinates production of output information.

Although a three-pronged structure is implied by Figure 10.15, complex flows in
large systems may dictate two or more control modules for each of the generic con-
trol functions described previously. The number of modules at the first level should
be limited to the minimum that can accomplish control functions and still maintain
good functional independence characteristics.

Step 6. Perform “second-level factoring.” Second-level factoring is accom-
plished by mapping individual transforms (bubbles) of a DED into appropriate mod-
ules within the architecture. Beginning at the transform center boundary and moving
outward along incoming and then outgoing paths, transforms are mapped into sub-
ordinate levels of the software structure. The general approach to second-level fac-
toring is illustrated in Figure 10.16

Although Figure 10.16 illustrates a one-to-one mapping between DFD transforms
and software modules, different mappings frequently occur. Two or even three bub-
bles can be combined and represented as one component, or a single bubble may be
expanded to two or more components. Practical considerations and measures of de-
sign quality dictate the outcome of second-level factoring. Review and refinement
may lead to changes in this structure, but it can serve as a “first-iteration” design.

Second-level factoring for incoming flow follows in the same manner. Factoring is
again accomplished by moving outward from the transform center boundary on the
incoming flow side. The transform center of monitor sensors subsystem software is
mapped somewhat differently. Each of the data conversion or calculation transforms
of the transform portion of the DFD is mapped into a module subordinate to the trans-
form controller. A completed first-iteration architecture is shown in Figure 10.17.

The components mapped in the preceding manner and shown in Figure 10.17 rep-
resent an initial design of software architecture. Although components are named in
a way that implies function, a brief processing narrative (adapted from the PSPEC cre-
ated during analysis modeling) should be written for each.

Step 7. Refine the first-iteration architecture using design heuristics for im-
proved software quality. A first-iteration architecture can always be refined by
applying concepts of functional independence (Chapter 9). Components are ex-
ploded or imploded to produce sensible factoring, good cohesion, minimal coupling,

Second-level
factoring for
monitor
sensors

U
Transform

flow boundary

314

CHAPTER 10 CREATING AN ARCHITECTURAL DESIGN 315

and most importantly, a structure that can be implemented without difficulty, tested
without confusion, and maintained without grief.

Refinements are dictated by the analysis and assessment methods described
briefly in Section 10.5, as well as practical considerations and common sense. There
e * \bre times, for example, when the controller for incoming data flow is totally unnec-
T ¢ssary, when some input processing is required in a component that is subordinate
o the transform controller, when high coupling due to global data cannot be
% ‘/ avoided, or when optimal structural characteristics cannot be achieved. Software re-
quirements coupled with human judgment is the final arbiter.

The objective of the preceding seven steps is to develop an architectural repre-
sentation of software. That is, once structure is defined, we can evaluate and refine
software architecture by viewing it as a whole. Modifications made at this time re-
quire little additional work, yet can have a profound impact on software quality.

The reader should pause for a moment and consider the difference between the de-
sign approach described and the process of “writing programs.” If code is the only rep-
resentation of software, the developer will have great difficulty evaluating or refining at
a global or holistic level and will, in fact, have difficulty “seeing the forest for the trees.”

SAFeHOME

g aFirst-Cut Architecture

m: cubgde as desugn modeling data. We can ehmmah &i& :

rst-cut design of the monitor
stops in fo ask Jamie her opinion.)

 that | derived.
.17, which she studies for a

necessary, and the smbﬁ” ¢
tolerable.

Ed: Simplification, huht
Jamie: Yep. And while we'
would be o good idea to img
display and generate displa
control panel is simple.
called produce dtsplay

u;éthe sensor input controller g (skeichmg) 50
b e do?

k we can do a few things to

ior the mapping. (He shows Jomie Figure
contra"er doesn’t do much, Jamie: Ifsa start"
ging a single flow path for incoming

316

PART TWO SOFTWARE ENGINEERING PRACTICE

Ficure 10.18

Refined
program
structure for
monitor
sensors

10.6.4 Transaction Mapping

In many software applications, a single data item triggers one of a number of infor-
mation flows that effect a function implied by the triggering data item. The data item,
called a transaction, and its corresponding flow characteristics are discussed in Sec-
tion 10.6.2. In this section we consider design steps used to map transaction flow
into a software architecture.

Transaction mapping will be illustrated by considering the user interaction
subsystem of the SafeHome security function. Level 1 data flow for this subsystem
is shown as part of Figure 10.12. Refining the flow, a level 2 data flow diagram is
developed and shown in Figure 10.19. The data object user commands flows
into the system and results in additional information flow along one of three
action paths. A single data item, command type, causes the data flow to fan out-
ward from a hub. Therefore, the overall data flow characteristic is transaction-
oriented.

It should be noted that information flow along two of the three action paths ac-
commodates additional incoming flow (e.g., system parameters and data are in-
put on the “configure” action path). Each action path flows into a single transform,
display messages and status.

The design steps for transaction mapping are similar and in some cases identical
to steps for transform mapping (Section 10.6.3). A major difference lies in the map-
ping of DFD to software structure.

Step 1. Review the fundamental system model.

Step 2. Review and refine data flow diagrams for the software.

CHAPTER 10 CREATING AN ARCHITECTURAL DESIGN 317

m Level 2 DFD for user interaction subsystem

User
commands

Raw
System parameters configuration ..
and data ata T

Command \ :

type Configure §

Formatted
confi?urotion
ata

Configuration information

Configuration

Password
ata

A/D message

Password S S Configuration

%
POINT
Firstdevel factoring
results in the derivation
of a control hierarchy
for the software.
SecondHevel factoring
distributes “worker”
modules under the
appropriate controller.

ata

Displa
Valid q inforr?anyon
passwor

Step 3. Determine whether the DFD has transform or transaction flow
characteristics.

Steps 1, 2, and 3 are identical to corresponding steps in transform mapping. The DFD
shown in Figure 10.19 has a classic transaction flow characteristic. However, flow
along two of the action paths emanating from the invoke command processing bub-
ble appears to have transform flow characteristics. Therefore, flow boundaries must
be established for both flow types.

Step 4. Identify the transaction center and the flow characteristics along
each of the action paths. The location of the transaction center can be immedi-
ately discerned from the DFD. The transaction center lies at the origin of a number
of actions paths that flow radially from it. For the flow shown in Figure 10.19, the in-
voke command processing bubble is the transaction center.

The incoming path (i.e., the flow path along which a transaction is received) and
all action paths must also be isolated. Each action path must be evaluated for its in-
dividual flow characteristic. For example, the “password” path (shown enclosed by a
shaded area in Figure 10.19) has transform characteristics. Incoming, transform, and
outgoing flow are indicated with boundaries.

Step 5. Map the DFD in a program structure amenable to transaction pro-
cessing. Transaction flow is mapped into an architecture that contains an in-
coming branch and a dispatch branch. The structure of the incoming branch is

318

PART TWO SOFTWARE ENGINEERING PRACTICE

Transaction
mapping

Transaction
control

otcher

Reception [
o path it

\—‘_‘/

developed in much the same way as transform mapping. Starting at the transaction
center, bubbles along the incoming path are mapped into modules. The structure of
the dispatch branch contains a dispatcher module that controls all subordinate ac-
tion modules. Each action flow path of the DFD is mapped to a structure that corre-
sponds to its specific flow characteristics. This process is illustrated schematically
in Figure 10.20.

Considering the user interaction subsystem data flow, first-level factoring for step
5 is shown in Figure 10.21. The bubbles read user command and activate/deactivate
system map directly into the architecture without the need for intermediate control
modules. The transaction center, invoke command processing, maps directly into a
dispatcher module of the same name. Controllers for system configuration and pass-
word processing are created as illustrated in Figure 10.21.

Step 6. Factor and refine the transaction structure and the structure of
each action path. Each action path of the data flow diagram has its own infor-
mation flow characteristics. We have already noted that transform or transaction
flow may be encountered. The action path-related “substructure” is developed using
the design steps discussed in this and the preceding section.

As an example, consider the password processing information flow shown (inside
shaded area) in Figure 10.19. The flow exhibits classic transform characteristics. A
password is input (incoming flow) and transmitted to a transform center where it is
compared against stored passwords. An alarm and warning message (outgoing
flow) are produced (if a match is not obtained). The “configure” path is drawn simi-

CHAPTER 10 CREATING AN ARCHITECTURAL DESIGN 319

First-level
factoring for
user interac-
tion subsystem

larly using the transform mapping. The resultant software architecture is shown in
Figure 10.22.

Step 7. Refine the first-iteration architecture using design heuristics for
improved software quality. This step for transaction mapping is identical to the
corresponding step for transform mapping. In both design approaches, criteria
such as module independence, practicality (efficacy of implementation and test),
and maintainability must be carefully considered as structural modifications are
proposed.

320

PART TWO SOFTWARE ENGINEERING PRACTICE

10.6.5 Refining the Architectural Design

Any discussion of design refinement should be prefaced with the following com-
ment: Remember that an “optimal design” that doesn’'t work has questionable merit.
The software designer should be concerned with developing a representation of soft-
ware that will meet all functional and performance requirements and merit accept-
ance based on design measures and heuristics.

Refinement of software architecture during early stages of design is to be en-
couraged. As we discussed earlier in this chapter, alternative architectural styles may
be derived, refined, and evaluated for the “best” approach. This approach to opti-
mization is one of the true benefits derived by developing a representation of soft-
ware architecture.

It is important to note that structural simplicity often reflects both elegance and
efficiency. Design refinement should strive for the smallest number of components
that is consistent with effective modularity and the least complex data structure that
adequately serves information requirements.

Software architecture provides a holistic view of the system to be built. It depicts the
structure and organization of software components, their properties, and the con-
nections between them. Software components include program modules and the
various data representations that are manipulated by the program. Therefore, data
design is an integral part of the derivation of the software architecture. Architecture
highlights early design decisions and provides a mechanism for considering the ben-
efits of alternative system structures.

Data design translates the data objects defined in the analysis model into data
structures that reside within the software. The attributes that describe the object, the
relationships between data objects and their use within the program all influence the
choice of data structures. At a higher level of abstraction, data design may lead to
the definition of an architecture for a database or a data warehouse.

A number of different architectural styles and patterns are available to the software
engineer. Each style describes a system category that (1) encompasses a set of compo-
nents that perform a function required by a system, (2) a set of connectors that enable
communication, coordination and cooperation among components, (3) constraints
that define how components can be integrated to form the system, and (4) semantic
models that enable a designer to understand the overall properties of a system.

In a general sense, architectural design is accomplished using four distinct steps.
First, the system must be represented in context. That is, the designer should define

CHAPTER 10 CREATING AN ARCHITECTURAL DESIGN 321

the external entities that the software interacts with and the nature of the interac-
tion. Once context has been specified, the designer should identify a set of top-level
abstractions, called archetypes, that represent pivotal elements of the system'’s be-
havior or function. After abstractions have been defined, the design begins to move
closer to the implementation domain. Components are identified and represented
within the context of an architecture that supports them. Finally, specific instantia-
tions of the architecture are developed to “prove” the design in a real world context.

As a simple example of architectural design, the mapping method presented in this
chapter uses data flow characteristics to derive a commonly used architectural style.
A data flow diagram is mapped into program structure using one of two mapping ap-
proaches—transform mapping or transaction mapping. Once an architecture has
been derived, it is elaborated and then analyzed against quality criteria.

[AHO83] Aho, A. V.,]. Hopcroft, and). Ullmann, Data Structures and Algorithms, Addison-Wesley,
1983.

[ALL97] Allen R., “A Formal Approach to Software Architecture,” Ph.D. Thesis, Carnegie Mellon
University, Technical Report Number: CMU-CS-97-144 1997.

[BAROO] Barroca, L. and P. Hall (eds.), Software Architecture: Advances and Applications, Springer-
Verlag, 2000. :

[BAS03] Bass, L., P. Clements, and R. Kazman, Software Architecture in Practice, 2nd ed. Addison-
Wesley, 2003.

[BOS00] Bosch, J., Design & Use of Software Architectures, Addison-Wesley, 2000.

[BUS96] Buschmann, F., Pattern-Oriented Software Architecture, Wiley, 1996.

[DAT00] Date, C. J., An Introduction to Database Systems, 7th ed., Addison-Wesley, 2000.

[DIKOQ] Dikel, D., D. Kane, and J. Wilson, Software Architecture: Organizational Principles and Pat-
terns, Prentice-Hall, 2000.

[FRE80] Freeman, P., “The Context of Design,” in Software Design Techniques, 3rd ed. (P. Freeman
and A. Wasserman, eds.), IEEE Computer Society Press, 1980, pp. 2—4.

[GAR94] Garlan D., R. Allen, and J. Ockerbloom, “Exploiting Style in Architectural Design Envi-
ronments,” in Proceedings of SIGSOFT ‘94 Symposium on the Foundations of Software Engi-
neering, 1994.

[GAROO] Garlan D., R. T. Monroe, and D. Wile, “Acme: Architectural Description of Component-
Based Systems,” in Foundations of Component-Based Systems, G. T. Leavens and M. Sitarman,
eds. Cambridge University Press, 2000.

[HOF00] Hofmeister, C., R. Nord, and D. Soni, Applied Software Architecture, Addison-Wesley, 2000.

[HOFO1] Hofmann, C., et al., “Approaches to Software Architecture,” downloadable from:
http://citeseer.nj.nec.com/84015 html.

[KAZ98] Kazman, R, et al., The Architectural Tradeoff Analysis Method, Software Engineering In-
stitute, CMU/SEI-98-TR-008, July 1998.

[KIM98] Kimball, R., L. Reeves, M. Ross, and W. Thornthwaite, The Data Warehouse Lifecycle
Toolkit: Expert Methods for Designing, Developing, and Deploying Data Warehouses, Wiley, 1998.

[LANO2] Land R., A Brief Survey of Software Architecture, Technical Report, Dept. of Computer
Engineering, Mdlardalen University, Sweden, February, 2002.

[LUC95] Luckham D. C., et al., “Specification and Analysis of System Architecture Using Rapide,”
IEEE Transactions on Software Engineering, issue “Special Issue on Software Architecture,” 1995.

[MAT96] Mattison, R., Data Warchousing: Strategies, Technologies and Techniques, McGraw-Hill,
1996.

[MYE78] Myers, G., Composite Structured Design, Van Nostrand, 1978.

322

PART TWO SOFTWARE ENGINEERING PRACTICE

[PRE98] Preiss, B. R., Data Structures and Algorithms: With Object-Oriented Design Patterns in
C++, Wiley, 1998.
[SHA96] Shaw, M., and D. Garlan, Software Architecture, Prentice-Hall, 1996.
[SHA97] Shaw, M., and P. Clements, “A Field Guide to Boxology: Preliminary Classification of Ar-
chitectural Styles for Software Systems,” Proc. COMPSAC, Washington, DC, August 1997.
[WAS80] Wasserman, A., “Principles of Systematic Data Design and Implementation,” in Soft-
ware Design Techniques (P. Freeman and A. Wasserman, eds.), 3rd ed., IEEE Computer Soci-
ety Press, 1980, pp. 287-293.

[YOU79] Yourdon, E., and L. Constantine, Structured Design, Prentice-Hall, 1979.

[ZHA98] Zhao,]., “On Assessing the Complexity of Software Architectures,” Proc. Intl. Software
Architecture Workshop, ACM, Orlando, FL, 1998, pp. 163-167.

10.1. Using a data flow diagram and a processing narrative, describe a computer-based sys-
tem that has distinct transform flow characteristics. Define flow boundaries and map the DFD
into a software architecture using the technique described in Section 10.6.3.

10.2. Write a three- to five-page paper that presents guidelines for selecting data structures
based on the nature of the problem. Begin by delineating the classical data structures encoun-
tered in software work and then describe criteria for selecting from these for particular types of
problems.

10.3. Explain the difference between a database that services one or more conventional busi-
ness applications and a data warehouse.

10.4. Using a data flow diagram and a processing narrative, describe a computer-based sys-
tem that has distinct transaction flow characteristics. Define flow boundaries and map the DFD
into a software structure using the technique described in Section 10.6.4.

10.5. Some of the architectural styles noted in Section 10.3.1 are hierarchical in nature and
others are not. Make a list of each type. How would the architectural styles that are not hierar-
chical be implemented?

10.6. If you haven't done so, complete Problem 8.10. Use the design methods described in this
chapter to develop a software architecture for the PHTRS.

10.7. Research the ATAM (use the SEI Web site) and present a detailed discussion of the six
steps presented in Section 10.5.1.

10.8. Select an application with which you are familiar. Answer each of the questions posed
for control and data in Section 10.3.3.

10.9. Some designers contend that all data flow may be treated as transform-oriented. Discuss
how this contention will affect the software architecture that is derived when a transaction-oriented
flow is treated as transform. Use an example flow to illustrate important points.

10.10. The terms architectural style, architectural pattern, and framework are often encountered
in discussions of software architecture. Do some research (use the Web) and describe how each
of these terms differs from its counterparts.

10.11. Present two or three examples of applications for each of the architectural styles noted
in Section 10.3.1.

10.12. Using the architecture of a house or building as a metaphor, draw comparisons with
software architecture. How are the disciplines of classical architecture and software architec-
ture similar? How do they differ?

CHAPTER 10 CREATING AN ARCHITECTURAL DESIGN 323

The literature on software architecture has exploded over the past decade. Books by Fowler (Pat-
terns of Enterprise Application Architecture, Addison-Wesley, 2003), Clements and his colleagues
(Documenting Software Architecture: View and Beyond, Addison-Wesley, 2002), Schmidt and his
colleagues (Pattern-Oriented Software Architectures, two volumes, Wiley, 2000), Bosch [BOS00],
Dikel and his colleagues [DIK00], Hofmeister and his colleagues [HOF00], Bass, Clements, and
Kazman [BAS03)], Shaw and Garlan [SHA96], and Buschmann et al. [BUS96] provide in-depth
treatment of the subject. Earlier work by Garlan (An Introduction to Software Architecture, Soft-
ware Engineering Institute, CMU/SEI-94-TR-021, 1994) provides an excellent introduction.
Clements and Northrop (Software Product Lines: Practices and Patterns, Addison-Wesley, 2001))
address the design of architectures that support software product lines. Clements and his col-
leagues (Evaluating Software Architectures, Addison-Wesley, 2002) consider the issues associated
with the assessment of architectural alternatives and the selection of the best architecture for a
given problem domain. i

Implementation-specific books on architecture address architectural design within a specific
development environment or technology. Wallnau and his colleagues (Building Systems from
Commercial Components, Addison-Wesley, 2001) present methods for constructing component-
based architectures. Pritchard (COM and CORBA Side-by-Side, Addison-Wesley, 1999), Mowbray
{CORBA Design Patterns, Wiley, 1997) and Mark et al. (Object Management Architecture Guide,
Wiley, 1996) provide detailed design guidelines for the CORBA distributed application support
framework. Shanley (Protected Mode Software Architecture, Addison-Wesley, 1996) provides ar-
chitectural design guidance for anyone designing PC-based real-time operating systems, multi-
task operating systems, or device drivers.

Current software architecture research is documented yearly in the Proceedings of the Interna-
tional Workshop on Software Architecture, sponsored by the ACM and other computing organiza-
tions, and the Proceedings of the International Conference on Software Engineering. Barroca and Hall
[BAROO] present a useful survey of recent research.

Data modeling is a prerequisite to good data design. Books by Teory (Database Modeling and
Design, Academic Press, 1998); Schmidt (Data Modeling for Information Professionals, Prentice-
Hall, 1998); Bobak (Data Modeling and Design for Today's Architectures, Artech House, 1997); Sil-
verston, Graziano, and Inmon (The Data Model Resource Book, Wiley, 1997); Date [DAT00], and
Reingruber and Gregory (The Data Modeling Handbook: A Best-Practice Approach to Building
Quality Data Models, Wiley, 1994) contain detailed presentations of data modeling notation,
heuristics, and database design approaches. The design of data warehouses has become in-
creasingly important in recent years. Books by Humphreys, Hawkins, and Dy (Data Warehous-
ing: Architecture and Implementation, Prentice-Hall, 1999); Kimball et al. [KIM98]; and Inmon
[INM95] cover the topic in considerable detail.

General treatment of software design with discussion of architectural and data design issues
can be found in most books dedicated to software engineering. More rigorous treatments of the
subject can be found in Feijs (A Formalization of Design Methods, Prentice-Hall, 1993), Witt et al.
(Software Architecture and Design Principles, Thomson Publishing, 1994), and Budgen (Softlware
Design, Addison-Wesley, 1994).

Complete presentations of data flow-oriented design may be found in Myers [MYE78], Your-
don and Constantine [YOU79}, and Page-jones (The Practical Guide to Structured Systems Design,
2nd ed., Prentice-Hall, 1988). These books are dedicated to design alone and provide compre-
hensive tutorials in the data flow approach.

A wide variety of information sources on architectural design are available on the Internet.
An up-to-date list of World Wide Web references that are relevant to architectural design can be
found at the SEPA Web site:
http://www.mhhe.com/pressman.

Key
CONCEPTS

cohesion

components
conventional

324

MODELING
COMPONENT-LEVEL DESIGN

omponent-level design occurs after the first iteration of architectural de-

sign has been completed. At this stage, the overall data and program

structure of the software has been established. The intent is to translate
the design model into operational software. But the level of abstraction of the ex-
isting design model is relatively high, and the abstraction level of the operational
program is low. The translation can be challenging, opening the door to the in-
troduction of subtle errors that are difficult to find and correct in later stages of
the software process. In a famous lecture, Edsgar Dijkstra, a major contributor to
our understanding of software design, stated [DIJ72]:

Software seems to be different from many other products, where as a rule higher qual-
ity implies a higher price. Those who want really reliable software will discover that
they must find a means of avoiding the majority of bugs to start with, and as a result,
the programming process will become cheaper . . . effective programmers . . . should
not waste their time debugging—they should not introduce bugs to start with.

Although these words were spoken many years ago, they remain true today.
When the design model is translated into source code, we must follow a set of de-
sign principles that not only perform the translation but also do not “introduce
bugs to start with.”

It is possible to represent the component-level design using a programming
language. In essence, the program is created using the architectural design model
as a guide. An alternative approach is to represent the component-level design

CHAPTER 11 MODELING COMPONENT-LEVEL DESIGN 325

using some intermediate (e.g., graphical, tabular, or text-based) representation
that can be translated easily into source code. Regardless of the mechanism that
is used to represent the component-level design, the data structures, interfaces,
and algorithms defined should conform to a variety of well-established design
guidelines that help us to avoid errors as the procedural design evolves. In this
chapter, we examine these design guidelines and the methods available for
achieving them.

Stated in a general fashion, a component is a modular building block for computer
software. More formally, the OMG Unified Modeling Language Specification [OMGO01]
defines a component as “a modular, deployable, and replaceable part of a system
that encapsulates implementation and exposes a set of interfaces.”

As we discussed in Chapter 10, components populate the software architecture,
and, as a consequence, play a role in achieving the objectives and requirements of
the system to be built. Because components reside within the software architec-
ture, they must communicate and collaborate with other components and with en-
tities (e.g., other systems, devices, people) that exist outside the boundaries of the
software.

“The defuils ure not he detiks. They make the design.”

The true meaning of the term “component” will differ depending on the point of
view of the software engineer who uses it. In the sections that follow, we examine
three important views of what a component is and how it is used as design model-
ing proceeds.

326

%
POINT
From an 00 viewpoint,

a component is a sef of
collaborating classes.

ConaP

Recall that analysis
modeling and design
maodeling are both
iterative actions. Elabo-
rafing the original
analysis class may
require additional
analysis steps, which
are then followed with
design modeling steps
to represent the elabo-
rated design class (the
defails of the
component).

PART TWO SOFTWARE ENGINEERING PRACTICE

11.1.1 An Object-Oriented View

In the context of object-oriented software engineering, a component contains a set
of collaborating classes.! Each class within a component has been fully elaborated
to include all attributes and operations that are relevant to its implementation. As
part of the design elaboration, all interfaces (messages) that enable the classes to
communicate and collaborate with other design classes must also be defined. To ac-
complish this, the designer begins with the analysis model and elaborates analysis
classes ({for components that relate to the problem domain) and infrastructure
classes (for components that provide support services for the problem domain).

To illustrate this process of design elaboration, consider software to be built for a
sophisticated print shop. The overall intent of the software is to collect the cus-
tomer’s requirements at the front counter, cost a print job, and then pass the job on
to an automated production facility. During requirements engineering, an analysis
class called PrintJob was derived. The attributes and operations defined during
analysis are noted at the top left of Figure 11.1. During architectural design, Print-
Job is defined as a component within the software architecture and is represented
using the shorthand UML notation shown in the middle right of the figure. Note that
PrintJob has two interfaces, computeJob, that provides job costing capability, and
initiatejob, that passes the job along to the production facility. These are represented
using the “lollipop” symbols shown to the left of the component box.

Component-level design begins at this point. The details of the component Print-
Job must be elaborated to provide sufficient information to guide implementation. The
original analysis class is elaborated to flesh out all attributes and operations required
to implement the class as the component PrintJob. Referring to the lower right por-
tion of Figure 11.1, the elaborated design class Printjob contains more detailed at-
tribute information as well as an expanded description of operations required to
implement the component. The interfaces computejob and initiateJob imply communi-
cation and collaboration with other components (not shown here). For example, the
operation computePageCosl) (part of the computejob interface) might collaborate with
a PricingTable component that contains job pricing information. The checkPriority()
operation (part of the initiateJob interface) might collaborate with a JobQueue com-
ponent to determine the types and priorities of jobs currently awaiting production.

This elaboration activity is applied to every component defined as part of the archi-
tectural design. Once it is completed, further elaboration is applied to each attribute,
operation, and interface. The data structures appropriate for each attribute must be
specified. In addition, the algorithmic detail required to implement the processing logic
associated with each operation is designed. This procedural design activity is discussed
later in this chapter. Finally, the mechanisms required to implement the interface are
designed. For OO software, this may encompass the description of all messaging that
is required to effect communication between objects within the system.

1 Insome cases, a component may contain a single class.

CHAPTER 11 MODELING COMPONENT-LEVEL DESIGN 327

Elaboration
of a design
component

Analysis class
Printjob

numberOfPages

numberOfSides

paperType
magnification
productionFeatures

Design
component

computeJobCost()

computejob
passjobtoPrinter()

initiateJob

<<interface>> Elaborated design closs
computelob Printjob
computePageCost{ }
computePaperCost{) :3:5;::8;;&9;5
computeProdCost{) \ paperType
computeTotallobCost{) . paperWeight
A paperSize
“ paperColor
«| magnification
colorRequirements
productionfeatures
| collationOptions
bindingOptions
<<interface>> coverStock
initiatelob bleed
priority
buildWorkOrder{) totallobCost
checkPriority{) WOnumber
ssJobto Production
- Q- - - - computePageCost{)
1 JccrnputePuperCost()
computeProdCost{ }
computeTotallobCost{)
buildWorkOrder()
checkPriority(}

passjobto Production()

11.1.2 The Conventional View

In the context of conventional software engineering, a component is a functional el-
ement of a program that incorporates processing logic, the internal data structures
that are required to implement the processing logic, and an interface that enables the
component to be invoked and data to be passed to it. A conventional component,
also called a module, resides within the software architecture and serves one of three
important roles as: (1) a control component that coordinates the invocation of all
other problem domain components, (2) a problem domain component that imple-
ments a complete or partial function that is required by the customer, or (3) an in-
Jrastructure component that is responsible for functions that support the processing
required in the problem domain.

Like object-oriented components, conventional software components are derived
from the analysis model. In this case, however, the data flow-oriented element of the

328

PART TWO SOFTWARE ENGINEERING PRACTICE

analysis model serves as the basis for the derivation. Each transform (bubble) repre-
sented at the lowest levels of the data flow diagram (Chapter 8) is mapped (Section
10.6) into a module hierarchy. Control components (modules) reside near the top of
the hierarchy (architecture), and problem domain components tend to reside toward
the bottom of the hierarchy. To achieve effective modularity, design concepts like
functional independence (Chapter 9) are applied as components are elaborated.

works is invariably found to have evolved from a simple system Mm

To illustrate this process of design elaboration for conventional components, we
again consider software to be built for a sophisticated photocopying center. A set of
data flow diagrams would be derived during analysis modeling. We'll assume that
these are mapped (Section 10.6) into an architecture shown in Figure 11.2. Each box
represents a software component. Note that the shaded boxes are equivalent in func-
tion to the operations defined for the PrintJob class discussed in Section 11.1.1. In
this case, however, each operation is represented as a separate module that is in-
voked as shown in the figure. Other modules are used to control processing and are
therefore control components.

During component-level design, each module in Figure 11.2 is elaborated. The
module interface is defined explicitly. That is, each data or control object that flows

Structure chart
for a conven-
tional system

Job
anagement
system
l(‘\
P N
L4 A Y
-, s s
”, A}
Read Select
print job jobmgmt
data function

Send job
to
production

Develop
job cost

Cove

As the design for each
software component is
elaborated, the focus
shiffs o the design of
specific data structures
ond procedural design
to manipulate the data
structures. However,
don’t forget the archr
tecture that must house
the components or the
global dota structures
that may serve many
components.

CHAPTER 11 MODELING COMPONENT-LEVEL DESIGN 329

across the interface is represented. The data structures that are used internal to the
module are defined. The algorithm that allows the module to accomplish its intended
function is designed using the stepwise refinement approach discussed in Chapter 9.
The behavior of the module is sometimes represented using a state diagram.

To illustrate this process, consider the module ComputePageCost. The intent of this
module is to compute the printing cost per page based on specifications provided by
the customer. Data required to perform this function are: number of pages in the docu-
ment, total number of documents to be produced, one- or two-side printing, color requirements,
size requirements. These data are passed to ComputePageCost via the module’s inter-
face. ComputePageCost uses these data to determine a page cost that is based on the
size and complexity of the job—a function of all data passed to the module via the
interface. Page cost is inversely proportional to the size of the job and directly pro-
portional to the complexity of the job.

Figure 11.3 represents the component-level design using a modified UML nota-
tion. The ComputePageCost module accesses data by invoking the modules getjob-
Data, which allows all relevant data to be passed to the component, and a database

m Component-level design for ComputePageCost

getlobData Desjgn component
o ——————

 ComputsPageCost

accessCostsDB
Flaborated module

PageCost ’ S I
in: numberPages ;

in: nymberDocs ‘
i il’)i;CQLQfE‘ i _2,;¢3, 4. .
- in: page size = A, B, C, B

out: page cost
in: job'size

.in: color=1,2,3, 4
in: pageSize =A,B,C, B

out: BPC
out: SF

getlobData {numberPages, numberDocs,

.. sides, color, pageSize, pageCost)
accessCostsDB(jobSize, color, pageSize,
BPC, SF}

computePageCost{] ==========-=

accessCostsDB (IS, color);
lookup size factor (SF) ->

‘accessCostDB {IS, color, size)
job complexity factor {JCF) =
1 + [{sides-1)*sideCost + SF]
pagecost = BPC * JCF

330 PART TWO SOFTWARE ENGINEERING PRACTICE

interface, accessCostsDB, which enables the module to access a database that con-
tains all printing costs. As design continues, the ComputePageCost module is elabo-
rated to provide algorithm and interface detail (Figure 11.3). Algorithm detail can be
represented using the pseudocode text shown in the figure or with a UML activity di-
agram. The interfaces are represented as a collection of input and output data ob-
jects or items. Design elaboration continues until sufficient detail is provided to guide
construction of the component.

11.1.3 A Process-Related View

The object-oriented and conventional views of component-level design presented in
the preceding sections assume that the component is being designed from scratch.
That is, the designer must create a new component based on specifications derived
from the analysis model. There is, of course, another approach.

Over the past decade, the software engineering community has emphasized the
need to build systems that make use of existing software components. In essence, a
catalog of proven design or code-level components,is made available to the software
engineer as design work proceeds. As the software architecture is developed, com-
ponents or design patterns are chosen from the catalog and used to populate the ar-
chitecture. Because these components have been created with reusability in mind, a
complete description of their interface, the function(s) they perform, and the commu-
nication and collaboration they require are all available to the designer. Component-
based software engineering is discussed in considerable detail in Chapter 30.

Middleware and Component-Based Software Engineering

One of the key elements that leads to the OMG CORBA (htip:/ /www.corba.org/).

success or failure of CBSE is the availability of ~ Microsoft COM
middleware. Middleware is a collection of infrastructure (http:/ /www.microsoft.com/com/tech/complus.asp).
components that enable problem domain components to Sun JavaBeans (htip://java.sun.com/products/ejb/).
communicate with one another across a network or within
a complex system. Three competing standards are
available to software engineers who want to use
component-based software engineering as their sofiware

The Web sites noted present a wide array of tutorials,
white papers, tools, and general resources on these
important middleware standards. Further information on
CBSE can be found in Chapter 30.

(l’OCSSSZ /

As we have already noted, component-level design draws on information developed
as part of the analysis model (Chapter 8) and represented as part of the architectural
model (Chapter 10). When an object-oriented software engineering approach is cho-
sen, component-level design focuses on the elaboration of analysis classes {problem
domain specific classes), and the definition and refinement of infrastructure classes.

CHAPTER 11 MODELING COMPONENT-LEVEL DESIGN 331

The detailed description of the attributes, operations, and interfaces used by these
classes is the design detail required as a precursor to the construction activity.

11.2.1 Basic Design Principles

Four basic design principles are applicable to component-level design and have been
widely adopted when object-oriented software engineering is applied. The underly-
ing motivation for the application of these principles is to create designs that are
more amenable to change and to reduce the propagation of side effects when
changes do occur. These principles can be used to guide the designer as each soft-
ware component is developed.

The Open-Closed Principle (OCP). “A module [component] should be open for ex-
tension but closed for modification” [MAROQ]. This statement seems to be a contradic-
tion, but it represents one of the most important characteristics of a good
component-level design. Stated simply, the designer should specify the component in
a way that allows it to be extended (within the functional domain that it addresses)
without the need to make internal (code or logic-level) modifications to the compo-
nent itself. To accomplish this, the designer creates abstractions that serve as a buffer
between the functionality that is likely to be extended and the design class itself.

For example, assume that the SafeHome security function makes use of a Detec-
tor class that must check the status of each type of security sensor. 1t is likely that as
time passes, the number and types of security sensors will grow. If internal process-
ing logic is implemented as a sequence of if-then-else constructs, each addressing a
different sensor type, the addition of a new sensor type will require additional inter-
nal processing logic (still another if-then-else). This is a violation of OCP.

One way to accomplish OCP for the Detector class is illustrated in Figure 11.4.
The sensor interface presents a consistent view of sensors to the Detector compo-
nent. If a new type of sensor is added no change is required for the Detector class
(component). The OCP is preserved.

Following the
OCP

332

PART TWO SOFTWARE ENGINEERING PRACTICE

SAFEHOME

Gpwc:‘

If you dispense with
design and hack out
code, just remember
that code is the
ultimate “concretion.”
You're violoting DIP

Vinod: Nope Doug wants b
going to take to add’ ﬂw#\e sec

Shakira (thinking a men
[She shows Vinod Figure 11.4] We'y
sensor classes behind the
we have specs for the doggta
add a piece of cake. Only ﬂung 3’13
ogain, jeez! appropriate component .. . uh,’
7o not ;@fdﬂ'g fo believe what to the Datector compomtgl;

They cal ﬁ r doggle angst sensor. delover the doggne lhmg unM

a now if he wanfs you fo?
lsérve their pets home in ;

" hﬂ‘k Iﬁh':f n:::&?g’::g:gw me do it with no hassle. o
, if the dog barks for Vinod (thinking a moment):

n scr sefs a specna! alarm ©f the “Open-Closed Principle™? V

Shakira (shrugging): Never heord.

Vinod (smiling): Not d problem.

Shakira: Yeah, the way we de

The Liskov Substitution Principle (LSP). “Subclasses should be substitutable for
their base classes” [MAROO]. This design principle, originally proposed by Barbara
Liskov [LIS88] suggests that a component that uses a base class should continue to
function properly if a class derived from the base class is passed to the component
instead. LSP demands that any class derived from a base class must honor any im-
plied contract between the base class and the components that use it. In the context
of this discussion, a “contract” is a precondition that must be true before the compo-
nent uses a base class and a post-condition that should be true after the component
uses a base class. When a designer creates derived classes, they must also conform
to the pre- and post-conditions.

Dependency Inversion Principle (DIP). “Depend on abstractions. Do not depend
on concretions” [MAROO]. As we have seen in the discussion of the OCP, abstractions
are the place where a design can be extended without great complication. The more
a component depends on other concrete components (rather than on abstractions
such as an interface), the more difficult it will be to extend.

The Interface Segregation Principle (ISP). “Many client-specific interfaces are
better than one general purpose interface”IMAROQ]. There are many instances in which

%
e,
POINT
Designing components
for reuse requires more
than good technical
design. It also requires
effective configuration
control mechanisms
(Chapter 27).

CHAPTER 11 MODELING COMPONENT-LEVEL DESIGN 333

multiple client components use the operations provided by a server class. ISP sug-
gests that the designer should create a specialized interface to serve each major cat-
egory of clients. Only those operations that are relevant to a particular category of
clients should be specified in the interface for that client. If multiple clients require
the same operations, they should be specified in each of the specialized interfaces.

As an example, consider the FloorPlan class that is used for the SafeHome security
and surveillance functions. For the security functions, FloorPlan is used only during
configuration activities and uses the operations placeDevice(), showDevice(), groupDe-
vice(), and removeDevice() to place, show, group, and remove sensors from the floor
plan. The SafeHome surveillance function uses the four operations noted for security,
but also requires special operations to manage cameras: showFOV() and showDe-
vicelD(). Hence, ISP suggests that client components from the two SaféHome functions
have specialized interfaces defined for them. The interface for security would encom-
pass only the operations placeDevice(), showDevice(), groupDevice(), and removeDe-
vice(). The interface for surveillance would incorporate the operations placeDevice(),
showDevice(), groupDevice(), and removeDevice(), showFOV(), and showDevicelDy).

Although component-level design principles provide useful guidance, components
themselves do not exist in a vacuum. In many cases, individual components or
classes are organized into subsystems or packages. It is reasonable to ask how this
packaging activity should occur. Exactly how should components be organized as
the design proceeds? Martin [MAROO] suggests additional packaging principles that
are applicable to component-level design:

The Release Reuse Equivalency Principle (REP). ‘The granule of reuse is the
granule of release” [MAROO]. When classes or components are designed for reuse,
there is an implicit contract that is established between the developer of the reusable
entity and the people who will use it. The developer commits to establish a release

“control system that supports and maintains older versions of the entity while the

users slowly upgrade to the most current version. Rather than addressing each class
individually, it is often advisable to group reusable classes into packages that can be
managed and controlled as newer versions evolve.

The Common Closure Principle (CCP). “Classes that change together belong to-
gether” [MAROO]. Classes should be packaged cohesively. That is, when classes are
packaged as part of a design, they should address the same functional or behavioral
area. When some characteristic of that area must change, it is likely that only those
classes within the package will require modification. This leads to more effective
change control and release management. '

The Common Reuse Principle (CRP). “Classes that aren’t reused together should
not be grouped together” [MAROO}. When one or more classes with a package
changes, the release number of the package changes. All other classes or packages
that rely on the package that has been changed must now update to the most recent

334

What should

we consider
when we name
components?

PART TWO SOFTWARE ENGINEERING PRACTICE

release of the package and be tested to ensure that the new release operates with-
out incident. If classes are not grouped cohesively, it is possible that a class with no
relationship to other classes within a package is changed. This will precipitate un-
necessary integration and testing. For this reason, only classes that are reused to-
gether should be included within a package.

11.2.2 Component-Level Design Guidelines

In addition to the principles discussed in Section 11.2.1, a set of pragmatic design
guidelines can be applied as component-level design proceeds. These guidelines ap-
ply to components, their interfaces, and the dependencies and inheritance charac-
teristics that have an impact on the resultant design. Ambler [AMBO02] suggests the
following guidelines:

Components. Naming conventions should be established for components that are
specified as part of the architectural model and then refined and elaborated as part
of the component-level model. Architectural component names should be drawn
from the problem domain and should have meaning to all stakeholders who view the
architectural model. For example, the class name FloorPlan is meaningful to every-
one reading it regardless of technical background. On the other-hand, infrastructure
components or elaborated component-level classes should be named to reflect
implementation-specific meaning. If a linked list is to be managed as part of the
FloorPlan implementation, the operation manageList() is appropriate, even if a non-
technical person might misinterpret it.?

It is also worthwhile to use stereotypes to help identify the nature of components
at the detailed design level. For example, < <infrastructure>> might be used to iden-
tify an infrastructure component; < <database>> could be used to identify a database
that services one or more design classes or the entire system; <<table>> could be
used to identify a table within a database.

Interfaces. Interfaces provide important information about communication and
collaboration (as well as helping us to achieve the OCP). However, unfettered repre-
sentation of interfaces tends to complicate component diagrams. Ambler [AMB02]
recommends that (1) lollipop representation of an interface should be used in lieu of
the more formal UML box and dashed arrow approach, when diagrams grow com-
plex; (2) for consistency, interfaces should flow from the left-hand side of the com-
ponent box; (3) only those interfaces that are relevant to the component under
consideration should be shown, even if other interfaces are available. These recom-
mendations are intended to simplify the visual nature of UML component diagrams.

Dependencies and inheritance. For improved readability, it is a good idea to
model dependencies from left to right and inheritance from bottom (derived classes)

2 It is unlikely that someone from marketing or the customer organization (a nontechnical type)
would examine detailed design information.

CHAPTER 11 MODELING COMPONENT-LEVEL DESIGN 335

Layer cohesion

CovaP
Although an under-
standing of the various
levels of cohesion is
instructive, it is more
important to be aware
of the general concept
as you design compo-
nents. Keep cohesion
as high as is possible.

——1

Control panel

—

Detector

to top (base classes). In addition, component interdependencies should be repre-
sented via interfaces, rather than by representation cf a component-to-component
dependency. Following the philosophy of the OCP, this will help to make the system
more maintainable.

11.2.3 Cohesion

In Chapter 9, we described cohesion as the “single-mindedness” of a component.
Within the context of component-level design for object-oriented systems, cohesion
implies that a component or class encapsulates only attributes and operations that
are closely related to one another and to the class or component itself. Lethbridge
and Laganiére [LETO1] define a number of different types of cohesion (listed in order
of the level of the cohesion?):

Functional. Exhibited primarily by operations, this level of cohesion occurs
when a module performs one and only one computation and then returns a resuit.

Layer. Exhibited by packages, components, and classes, this type of cohesion
occurs when a higher layer accesses the services of a lower layer, but lower layers
do not access higher layers. Consider for example, the SafeHome security function
requirement to make an outgoing phone call if an alarm is sensed. It might be pos-
sible to define a set of layered packages as shown in Figure 11.5. The shaded pack-
ages contain infrastructure components. Access is from the control panel package
downward.

Communicational. All operations that access the same data are defined within
one class. In general, such classes focus solely on the data in question, accessing
and storing it.

3 In general, the higher the level of cohesion, the easier the component is to implement, test, and
maintain.

336 PART TWO SOFTWARE ENGINEERING PRACTICE

Classes and components that exhibit functional, layer, and communicational cohe;
sion are relatively easy to implement, test, and maintain. The designer should strive
to achieve these levels of cohesion. However, there are many instances when the fol-
lowing lower levels of cohesion are encountered:

Sequential. Components or operations are grouped in a manner that allows
the first to provide input to the next and so on. The intent is to implement a se-
quence of operations.

Procedural. Components or operations are grouped in a manner that allows
one to be invoked immediately after the preceding one was invoked, even when
there is no data passed between them.

Temporal. Operations that are performed to reflect a specific behavior or state,
€.8., an operation performed at start-up or all operations performed when an error
is detected.

Utility. Components, classes, or operations that exist within the same category
but are otherwise unrelated are grouped together. For example, a class called Sta-
tistics exhibits utility cohesion if it contains all attributes and operations required
to compute six simple statistical measures.

These levels of cohesion are less desirable and should be avoided when design al-
ternatives exist. It is important to note, however, that pragmatic design and imple-
mentation issues sometimes force a designer to opt for lower levels of cohesion.

SAFEHOME

, lm' ‘ﬂ» scene: Jamie's cubicle. displaylDf) gets the camera ID and dispkgfs
r$: ‘and Ed—members of the camera icon.
aring team who are working displayView{) shows me the ﬁeld of view o“f he.
camera graphically. - :
displayZoomf) shows me. lhe Mo
camera graphically.
Ed: I've designed each separately, ond they're ¢
simple operafions. So | fhought it might be o good |
:) combine all of the display operations into jt
like your input on called displayCamerafj—itll show the'ID, the view,
the zoom. Whaddaya think¢ . - -
i Jamie (grimacing): Not sure thcrl’s‘mh
five operations for camera. gd (frowning): Why? All of these lnﬁe

Y ; headaches. ; ~
: Typel) tells me the type of camera. Jamie: The problem with combmmg Ihem iswelose
Locatior) allows me to move the camera cohesion. You know, the d:splayCamem{} op wbn’f be

single-minded.

CHAPTER 11

Jt So whatt The whole thing

MODELING COMPONENT-LEVEL DESIGN

337

Jamie: Maybe not; but

ﬁpwc:‘

As the design for each
software component is
elaborated, the focus

0 ~ lines, max. IYl be easier to years from now iwsb
o understand the op as well
, mm')keﬁng decides to change the might be sloppy.
t the view lield?: Ed: So you're againstift
Jamie: You're the desigr

the displayCarfieraf) op and make er.
e be sure you undersiand the
cohesion. i
Ed (thinking a moment
separate display ops.
Jamie: Good decisi

11.2.4 Coupling

In earlier discussions of analysis and design, we noted that communication and col-
laboration are essential elements of any object-oriented system. There is, however,
a darker side to this important (and necessary) characteristic. As the amount of com-
munication and collaboration increases (i.e., as the degree of “connectedness” be-
tween classes grows), the complexity of the system also increases. And as
complexity rises, the difficulty of implementing, testing, and maintaining software
also increases.

Coupling is a qualitative measure of the degree to which classes are connected to
one another. As classes (and components) become more interdependent, coupling
increases. An important objective in component-level design is to keep coupling as
low as is possible.

Class coupling can manifest itself in a variety of ways. Lethbridge and Laganiére
[LETO1] define the following coupling categories:

Content coupling. Occurs when one component “surreptitiously modifies data
that is internal to another component” [LETO1]. This violates information hiding—a
basic design concept.

shiffs to the design of Common coupling. Occurs when a number of components all make use of a
spefic dota stuctres global variable. Although this is sometimes necessary (e.g., for establishing default
;’"d p"’_‘e‘;”r’almdei’j-‘";; values that are applicable throughout an application), common coupling can lead to
o manipulate the doi _ .

structures. However, uncontrolled error propagation and unforeseen side effects when changes are made.
don't forgef the archi Control coupling. Occurs when operation A() invokes operation B() and passes
fecture that must house 5 control flag to B. The control flag then “directs” logical flow within B. The prob-
the components or the

global dot shuctues lem with this form of coupling is that an unrelated change in B can result in the ne-
that may sevemany ~ Ce€Ssity to change the meaning of the control flag that A passes. If this is

components.

overlooked, an error will result.

338 PART TWO SOFTWARE ENGINEERING PRACTICE

Stamp coupling. Occurs when ClassB is declared as a type for an argument of
an operation of ClassA. Because ClassB is now a part of the definition of ClassA,
modifying the system becomes more complex.

Data coupling. Occurs when operations pass long strings of data arguments.
The “bandwidth” of communication between classes and components grows and the
complexity of the interface increases. Testing and maintenance are more difficult.

Routine call coupling. Occurs when one operation invokes another. This level
of coupling is common and is often quite necessary. However, it does increase the
connectedness of a system.

Type use coupling. Occurs when component A uses a data type defined in
component B (e.g., this occurs whenever “a class declares an instance variable or
a local variable as having another class for its type” [LETO1]). If the type definition
changes, every component that uses the definition must also change.

Inclusion or import coupling. Occurs when component A imports or includes
a package or the content of component B.

External coupling. Occurs when a component communicates or collaborates
with infrastructure components (e.g., operating system functions, database capa-
bility, telecommunication functions). Although this type of coupling is necessary, it
should be limited to a small number of components or classes within a system.

Software must communicate internally and externally. Therefore, coupling is a fact
of life. However, the designer should work to reduce coupling whenever possible and
understand the ramifications of high coupling when it cannot be avoided.

SAFEHOME

Shakira (exasperated):

to work on your inferpersonal
Vinod: You were sayi »
Shakira: Okay, anyway,

an operation within ecch sen:
o that would collaborute d
it seemed like o not-so- component, well, with
just thought I'd run it~ component. N
Vinod (pensive): Your

collaboration occur out of a
ControlPanel or something?
Shakira: Yech . .. butthen
that every sensor object will be
OutgoingCall component, and that

recognizes an alarm

wecdl them sensors,

CHAPTER 11 MODELING COMPONENT-LEVEL DESIGN 339

well, 1just Shakiras It just didn

Earlier in this chapter we noted that component-level design is elaborative in nature.
The designer must transform information from the analysis and architectural mod-
els into a design representation that provides sufficient detail to guide the construc-
tion (coding and testing) activity. The following steps represent a typical task set for
component-level design, when it is applied for an object-oriented system.

Step 1. Identify all design classes that correspond to the problem domain.
Using the analysis and architectural models, each analysis class and architectural
component is elaborated as described in Section 11.1.1.

e Step 2. Identify all design classes that correspond to the infrastructure do-
AD wcz’. main. These classes are not described in the analysis model and are often missing
Ifyou're workingina from the architecture model, but they must be described at this point. As we have

’r;:’"f()r‘;f’l'w’onr';’e"" noted earlier, classes and components in this category include GUI components, op-
e first threg steps . .

foaus On reﬁneman of crating system components, object and data management components, and others.
data objects and Step 3. Elaborate all design classes that are not acquired as reusable com-
processing functions

(hansforms) identified ponents. Elaboration requires that all interfaces, attributes, and operations neces-
as part of the analysis ~ Sary to implement the class be described in detail. Design heuristics (e.g., component
model. cohesion and coupling) must be considered as this task is conducted.

Step 3a. Specify message details when classes or components collaborate.
The analysis model makes use of a collaboration diagram to show how analysis
classes collaborate with one another. As component-level design proceeds, it is
sometimes useful to show the details of these collaborations by specifying the struc-
ture of messages that are passed between objects within a system. Although this de-
sign activity is optional, it can be used as a precursor to the specification of interfaces
that show how components within the system communicate and collaborate.
Figure 11.6 illustrates a simple collaboration diagram for the printing system dis-
cussed earlier. Three objects, Productionjob, WorkOrder, and JobQueue, col-
laborate to prepare a print job for submission to the production stream. Messages
are passed between objects as illustrated by the arrows in the figure. During analy-
sis modeling the messages are specified as shown in the figure. However, as design

340

PART TWO SOFTWARE ENGINEERING PRACTICE

Collaboration
diagram with
messaging

2: submitJob
(WOnumber)

1: buildlob

(WOnumbe)lV

:lébQueug

proceeds, each message is elaborated by expanding its syntax in the following
manner [BENO02]:

[guard condition] sequence expression (return value) :=

message nhame (argument list)

where a [guard condition] is written in Object Constraint Language (OCL)* and speci-
fies any set of conditions that must be met before the message can be sent; sequence
expression is an integer value (or other ordering indicator, e.g., 3.1.2) that indicates
the sequential order in which a message is sent; (return value) is the name of the in-
formation that is returned by the operation invoked by the message; message name
identifies the operation that is to be invoked, and (argument list) is the list of attributes
that are passed to the operation.

Step 3b. Identify appropriate interfaces for each component. Within the
context of component-level design, a UML interface is “a group of externally visible
(i.e., public) operations. The interface contains no internal structure, it has no attrib-
utes, no associations. . . .” [BEB02]. Stated more formally, an interface is the equiva-
lent of an abstract class that provides a controlled connection between design
classes. The elaboration of interfaces is illustrated in Figure 11.1. In essence, opera-
tions defined for the design class are categorized into one or more abstract classes.
Every operation within the abstract class (the interface) should be cohesive; that is,
it should exhibit processing that focuses on one limited function or subfunction.
Referring to Figure 11.1, it can be argued that the interface initiateJob does not ex-
hibit sufficient cohesion. In actuality, it performs three different subfunctions: build-
ing a work order, checking job priority, and passing a job to production. The interface
design should be refactored. One approach might be to reexamine the design classes
and define a new class WorkOrder that would take care of all activities associated
with the assembly of a work order. The operation buildWorkOrder() becomes a part

4 OCL is discussed briefly in Section 11.4 and in Chapter 28.

CHAPTER 11 MODELING COMPONENT-LEVEL DESIGN 341

AR WA Refactoring interfaces and class definitions for PrintJob

computeJob

getlobDescription }

,4‘,
O] \

appropriate attributes
o——— checkPriority () l

of that class. Similarly, we might define a class JobQueue that would incorporate the
operation checkPrior:ty(). A class Productionjob would encompass all information
associated with a production job to be passed to the production facility. The inter-
face initiateJob would then take the form shown in Figure 11.7. The interface initiate-
Job is now cohesive, focusing on one function. The interfaces associated with
Productionjob, WorkOrder, and JobQueue are similarly single-minded.

Step 3c. Elaborate attributes and define data types and data structures re-
quired to implement them. In general, data structures and types used to describe
attributes are defined within the context of the programming language that is to be used
for implementation. UML defines an attribute’s data type using the following syntax:

name : type-expression = initial-value {property string}

where name is the attribute name and type expression is the data type; initial value is the
value that the attribute takes when an object is created; and property-string defines a
property or characteristic of the attribute.

During the first component-level design iteration, attributes are normally de-
scribed by name. Referring once again to Figure 11.1, the attribute list for Printjob
lists only the names of the attributes. However, as design elaboration proceeds, each
attribute is defined using the UML attribute format noted. For example, paperType-
weight is defined in the following manner:

paperType-weight: string = “A" { contains 1 of 4 values - A, B, C, or D}

which defines paperType-weight as a string variable initialized to the value A that can
take on one of four values from the set {A,B,C,D}.

342

CovaP

Use stepwise elabore-
tion as you refine the
component design.
Always ask, “Is there 0
way this can be simplF
fied and yet still
accomplish the same
result?”

PART TWO SOFTWARE ENGINEERING PRACTICE

If an attribute appears repeatedly across a number of design classes, and it has a
relatively complex structure, it is best to create a separate class to accommodate the
attribute.

Step 3d. Describe processing flow within each operation in detail. This may
be accomplished using a programming language-based pseudocode (Section 11.5.5)
or with a UML activity diagram. Each software component is elaborated through a
number of iterations that apply the stepwise refinement concept (Chapter 9).

The first iteration defines each operation as part of the design class. In every case,
the operation should be characterized in a way that ensures high cohesion; that is,
the operation should perform a single targeted function or subfunction. The next it-
eration does little more than expand the operation name. For example, the operation
computePaperCosl() noted in Figure 11.1 can be expanded in the following manner:

computePaperCost (weight, size, color): numeric

This indicates that computePaperCost() requires the attributes weight, size and color as
input and returns a value that is numeric (actually a dollar value) as output.

\ va‘(ﬂwve written a shorter letter.”

If the algorithm required to implement computePaperCosty() is simple and widely un-
derstood, no further design elaboration may be necessary. The software engineer who
does the coding will provide the detail necessary to implement the operation. How-
ever, if the algorithm is more complex or arcane, further design elaboration is required
at this stage. Figure 11.8 depicts a UML activity diagram for computePaperCost(). When
activity diagrams are used for component-level design specification, they are gener-
ally represented at a level of abstraction that is somewhat higher than source code.
An alternative approach-—the use of pseudocode for design specification—is dis-
cussed later in this chapter.

Step 4. Describe persistent data sources (databases and files) and identify
the classes required to manage them. Databases and files normally transcend
the design description of an individual component. In most cases, these persistent
data stores are initially specified as part of architectural design. However, as design
elaboration proceeds, it is often useful to provide additional detail about the struc-
ture and organization of these persistent data sources.

Step 5. Develop and elaborate behavioral representations for a class or
component. UML state diagrams were used as part of the analysis model to rep-
resent the externally observable behavior of the system and the more localized be-
havior of individual analysis classes. During component-level design, it is sometimes
necessary to model the behavior of a design class.

CHAPTER 11 MODELING COMPONENT-LEVEL DESIGN 343

m UML activity diagram for computePaperCost()

returns baseCostperPage

Color is custom

The dynamic behavior of an object (an instantiation of a design class as the pro-
gram executes) is affected by events that are external to it and the current state
(mode of behavior) of the object. To understand the dynamic behavior of an object,
the designer must examine all use-cases that are relevant to the design class
throughout its life. These use-cases provide information that helps the designer to
delineate the events that affect the object and the states in which the object resides
as time passes and events occur. The transitions between states (driven by events)
is represented using a UML statechart [BENO2] as illustrated in Figure 11.9.

The transition from one state (represented by a rectangle with rounded corners)
to another occurs as a consequence of an event that takes the form:

Event-name (parameter-list) [guard-condition] / action expression

PART TWO SOFTWARE ENGINEERING PRACTICE

m Statechart fragment for the PrintJob class

Behavior within the
state building/obData

datalnputincomplete

exxl/dlsplw obDat
do/checkCansssiency
include/dotalnput~ ',
datalnputCompleted [all data

items consistent]/disployUserOptions

jobCostAccepted [customer is authorized]/
getElectronicSignature

deliveryDateAccepted [customer is authorized)/
printlobEstimate

(- submittingJob
entry/submitiob
exit/initiatelob
do/| ploce on JobQueue

\

jobSubmitted [all authorizations acquired]/
printWorkOrder

where event-name identifies the event; parameter-list incorporates data that are associ-
ated with the event; guard-condition is written in Object Constraint Language (OCL)
and specifies a condition that must be met before the event can occur, and action ex-
pression defines an action that occurs as the transition takes place.

Referring to Figure 11.9, each state may define entry/ and exit/ actions that occur
as transitions into and out of the state occur. In most cases, these actions correspord
to operations that are relevant to the class that is being modeled. The do/ indicator
provides a mechanism for indicating activities that occur while in the state and the
include/ indicator provides a means for elaborating the behavior by embedding more
statechart detail within the definition of a state.

It is important to note that the behavioral model often contains information that
is not immediately obvious in other design models. For example, careful examina-
tion of the statechart in Figure 11.9 indicates that the dynamic behavior of the Print-
Job class is contingent upon two customer approvals as costs and schedule data for
the print job are derived. Without approvals (the guard condition ensures that the

CHAPTER 11 MODELING COMPONENT-LEVEL DESIGN 345

customer is authorized to approve) the print job cannot be submitted because there
is no way to reach the submittingjob state.

Step 6. Elaborate deployment diagrams to provide additional implementa-
tion detail. Deployment diagrams (Chapter 9) are used as part of architectural de-
sign and are represented in descriptor form. In this form, major system functions
(often represented as subsystems) are represented within the context of the com-
puting environment that will house them.

During component-level design, deployment diagrams can be elaborated to rep-
resent the location of key packages of components. However, components generally
are not represented individually within a component diagram. The reason for this is
to avoid diagrammatic complexity. In some cases, deployment diagrams are elabo-
rated into instance form at this time. This means that the specific hardware and op-
erating system environment(s) that will be used is (are) specified and the location of
component packages within this environment is indicated.

Step 7. Factor every component-level design representation and always
consider alternatives. Throughout this book, we have emphasized that design is
an iterative process. The first component-level model you create will not be as com-
plete, consistent, or accurate as the nth iteration you apply to the model. It is essen-
tial to refactor as design work is conducted.

In addition, a designer should not suffer from tunnel vision. There are always alter-
native design solutions, and the best designers consider all (or most) of them before
settling on the final design model. Develop alternatives and consider each carefully,
using the design principles and concepts presented in Chapters 5 and 9 and in this
chapter.

P
Ve,
POINT
0CL provides a formal
grammar and syntax
for describing
component-level
design elements.

The wide variety of diagrams available as part of UML provide a designer with a rich
set of representational forms for the design model. However, graphical representa-
tions are often not enough. The designer needs a mechanism for explicitly and for-
mally representing information that constrains some element of the design model. It
is possible, of course, to describe constraints in a natural language such as English,
but this approach invariably leads to inconsistency and ambiguity. For this reason, a
more formal language—one that draws on set theory and formal specification lan-
guages (Chapter 28) but has the somewhat less mathematical syntax of a program-
ming language—seems appropriate.

The Object Constraint Language (OCL) complements UML by allowing a software
engineer to use a formal grammar and syntax to construct unambiguous statements

The complee 0

downloaded from

www.omg.org.

PART TWO SOFTWARE ENGINEERING PRACTICE

about various design model elements (e.g., classes and objects, events, messages,
interfaces). The simplest OCL language statements are constructed in four parts:
(1) a context that defines the limited situation in which the statement is valid; (2) a
property that represents some characteristics of the context (e.g., if the context is a
class, a property might be an attribute); (3) an operation (e.g., arithmetic, set-
oriented) that manipulates or qualifies a property; and (4) keywords (e.g., if, then, else,
and, or, not, implies) that are used to specify conditional expressions.

As a simple example of an OCL expression, consider the guard condition placed
on the jobCostAccepted event that causes a transition between the states comput-
ingJobCost and formingJob within the statechart diagram for the PrintJob class
(Figure 11.9). In the diagram, the guard condition is expressed in natural language
and implies that authorization can only occur if the customer is authorized to ap-
prove the cost of the job. In OCL, the expression may take the form:

customer

self.authorizationAuthority = ‘yes'

where a Boolean attribute, authorizationAuthority, of the class (actually a specific in-
stance of the class) named Customer must be set to yes for the guard condition to
be satisfied.

As the design model is created, there are often instances (e.g., Section 11.2.1) in
which pre- or post-conditions must be satisfied prior to completion of some action
specified by the design. OCL provides a powerful tool for specifying pre- and post
conditions in a formal manner. As an example, consider an extension to the print
shop system (discussed throughout this chapter) in which the customer provides an
upper cost bound for the print job and a “drop-dead” delivery date at the same time
as other print job characteristics are specified. If cost and delivery estimates exceed
these bounds, the job is not submitted and the customer must be notified. In OCL, a
set of pre- and post-conditions may be specified in the following manner:

context PrintJob::validate(upperCostBound : Integer, custDeliveryReq :
Integer)
pre: upperCostBound > O
and custDeliveryReq > O
and self.jobAuthorization = 'no’
post: if self.totalobCost <= upperCostBound
and self.deliveryDate <= custDeliveryReq
then
self.jobAuthorization = 'yes’
endif

This OCL statement defines an invariant—conditions that must exist prior to (pre) and
after (post) some behavior. Initially, a precondition establishes that bounding cost

CHAPTER 11 MODELING COMPONENT-LEVEL DESIGN 347

and delivery date must be specified by the customer, and authorization must be set
to “no.” After costs and delivery are determined, the post-condition is applied. It
should also be noted that the expression: self.jobAuthorization = 'yes' is not assigning
the value “yes,” but is declaring that the jobAuthorization must have been set to “yes”
by the time the operation finishes.

A complete description of OCL is beyond the scope of this book.® Interested read-
ers should see [WAR98] and [OMGO01] for additional detail.

SOFTWARE TooOLS

UML and OCL and includes a variety of design assist

- UML/OCL
Q Obijective: A wide variety of UML tools are

available to assist the designer at all levels of
design. Some of these tools provide OCL support.

Mechanics: Tools in this category enable a designer to

tools that go beyond the generation of UML diagrams
and OCL expressions.
Dresden OCL toolkit, developed by Frank Finger at the

Dresden University of Technology (http://dresden-
ocl.sourceforge.net/}, is a toolkit based on an OCL
compiler encompassing several modules which parse,
type check, and normalize OCL constraints.

OClL parser, developed by IBM (http:/ /www-
3.ibm.com/software/ad/library/standards/ocl-
download.himl), is written in Java and is available for
free to the object-oriented community to encourage the
use of OCL with UML modelers.

create all UML diagrams that are necessary to build a
complete design model. More importantly, many tools
provide solid syntax and semantic checking, and version
and change control management (Chapter 27). When
OCL capability is provided, tools enable the designer to
create OCL expressions and, in some cases, “compile”
them for various types of evaluation and analysis.

Representative Tools®
ArgoUML, distributed at Tigress.org

\(hh‘p:/ /argouml.tigris.org/), supports the complete /

The foundations of component-level design for conventional software components’
were formed in the early 1960s and were solidified with the work of Edsgar Dijkstra
and his colleagues ([BOH66], [DJ65], [D]J76]). In the late 1960s, Dijkstra and others
proposed the use of a set of constrained logical constructs from which any program
could be formed. The constructs emphasized “maintenance of functional domain.”
That is, each construct had a predictable logical structure, was entered at the top and
exited at the bottom, enabling a reader to follow procedural flow more easily.

5 However, further discussion of OCL (presented in the context of formal methods) is presented in
Chapter 28.

6 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.
In most cases, tool names are trademarked by their respective developers.

7 A conventional software component implements an element of processing that addresses a func-
tion or subfunction in the problem domain or some capability in the infrastructure domain. Often called
modules, procedures, or subroutines, conventional components do not encapsulate data in the way that
OO components do.

348

n
Te,

POINT
Structured
programming is @
design technigue that
constrains logic flow to
three constructs:
sequence, condifion,
and repetition.

PART TWO SOFTWARE ENGINEERING PRACTICE

The constructs are sequence, condition, and repetition. Sequence implements
processing steps that are essential in the specification of any algorithm. Condition
provides the facility for selected processing based on some logical occurrence, and
repetition allows for looping. These three constructs are fundamental to structured
programming—an important component-level design technique.

The structured constructs were proposed to limit the procedural design of soft-
ware to a small number of predictable operations. Complexity metrics (Chapter 15)
indicate that the use of the structured coristructs reduces program complexity and
thereby enhances readability, testability, and maintainability. The use of a limited
number of logical constructs also contributes to a human understanding process that
psychologists call chunking. To understand this process, consider the way in which
you are reading this page. You do not read individual letters but rather recognize pat-
terns or chunks of letters that form words or phrases. The structured constructs are
logical chunks that allow a reader to recognize procedural elements of a module,
rather than reading the design or code line by line. Understanding is enhanced when
readily recognizable logical patterns are encountered.

11.5.1 Graphical Design Notation

We have discussed the UML activity diagram earlier in this chapter and in Chapters
7 and 8. The activity diagram allows a designer to represent sequence, condition, and
repetition—all elements of structured programming—and is the descendent of an
earlier pictorial design representation (still used widely) called a flowchart.

A flowchart, like an activity diagram, is quite simple pictorially. A box is used to
indicate a processing step. A diamond represents a logical condition, and arrows
show the flow of control. Figure 11.10 illustrates three structured constructs. The

Flowchart
constructs

Condition

<P

Else-part Then-part
If-then-else
Case
condition L +
<>4:L:|
E
T
Do while Repeat until

v Selection Repetition

anc:’

Stuctured program-
ming constructs should
make it easier to
understand the design.
If using them without
“Yiolation” introduces
unnecessary
complexity, it is okay
to violote.

ﬁpwcs‘

Use a decision table
when a complex set of
conditions and actions
are encountered within
a component.

How do |
build o
decision table?

CHAPTER 11 MODELING COMPONENT-LEVEL DESIGN 349

sequence is represented as two processing boxes connected by a line (arrow) of
control. Condition, also called if-then-else, is depicted as a decision diamond that if
true, causes then-part processing to occur, and if false, invokes else-part process-
ing. Repetition is represented using two slightly different forms. The do while tests
a condition and executes a loop task repetitively as long as the condition holds
true. A repeat until executes the loop task first, then tests a condition and repeats
the task until the condition fails. The selection (or select-case) construct shown in
the figure is actually an extension of the if-then-else. A parameter is tested by suc-
cessive decisions until a true condition occurs and a case part processing path is
executed.

In general, the dogmatic use of only the structured constructs can introduce inef-
ficiency when an escape from a set of nested loops or nested conditions is required.
More importantly, additional complication of all logical tests along the path of escape
can cloud software control flow, increase the possibility of error, and have a nega-
tive impact on readability and maintainability. What can we do?

The designer is left with two options: (1) The procedural representation is re-
designed so that the “escape branch” is not required at a nested location in the flow
of control or (2) the structured constructs are violated in a controlled manner; that
is, a constrained branch out of the nested flow is designed. Option 1 is obviously the
ideal approach, but option 2 can be accommodated without violating of the spirit of
structured programming.

11.5.2 Tabular Design Notation

In many software applications, a module may be required to evaluate a complex com-
bination of conditions and select appropriate actions based on these conditions. Deci-
sion tables [HUR83] provide a notation that translates actions and conditions (described
in a processing narrative) into a tabular form. The table is difficult to misinterpret and
may even be used as a machine readable input to a table driven algorithm.

A decision table is divided into four quadrants. The upper left-hand quadrant con-
tains a list of all conditions. The lower left-hand quadrant contains a list of all actions
that are possible based on combinations of conditions. The right-hand quadrants
form a matrix that indicates condition combinations and the corresponding actions
that will occur for a specific combination. Therefore, each column of the matrix may
be interpreted as a processing rule. The following steps are applied to develop a deci-
sion table:

1. List all actions that can be associated with a specific procedure (or module).

2. List all conditions (or decisions made) during execution of the procedure.

3. Associate specific sets of conditions with specific actions, eliminating impos-
sible combinations of conditions; alternatively, develop every possible per-
mutation of conditions.

4. Define rules by indicating what action(s) occurs for a set of conditions.

350

PART TWO SOFTWARE ENGINEERING PRACTICE

Resultant
decision table

To illustrate the use of a decision table, consider the following excerpt from an in-
formal use-case that has just been proposed for the print shop system:

Three types of customers are defined: a regular customer, a silver customer, and a gold
customer (these types are assigned by the amount of business the customer does with the
print shop over a 12-month period). A regular customer receives normal print rates and
delivery. A silver customer gets an 8 percent discount on all quotes and is placed ahead
of all regular customers in the job queue. A gold customer gets a 15 percent reduction in
quoted prices and is placed ahead of both regular and silver customers in the job queue.
A special discount of x percent in addition to other discounts can be applied to any cus-
tomer’s quote at the discretion of management.

Figure 11.11 illustrates a decision table representation of the preceding informal
use-case. Each of the six rules indicates one of six viable conditions. As a general
rule, the decision table can be used effectively to supplement other procedural de-
sign notation.

11.5.3 Program Design Language

Program design language (PDL), also called structured English or pseudocode, is “a
pidgin language in that it uses the vocabulary of one language (i.e., English) and the
overall syntax of another (i.e., a structured programming language)” [CAI75]. In this
chapter, PDL is used as a generic reference for a design language.

At first glance PDL may look like a programming language. The difference be-
tween PDL and a real programming language lies in the use of narrative text (e.g.,
English) embedded directly within PDL statements. Given the use of narrative text
embedded directly into a syntactical structure, PDL cannot be compiled. However,
tools can translate PDL into a programming language “skeleton” and/or a graphical
representation (e.g., a flowchart) of design. These tools also produce nesting maps,
a design operation index, cross-reference tables, and a variety of other information.

